
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2020/2021

Application of Graph Theory to Diagrammatically

Solve the ‘Gold in a Box’ Logic Puzzle

James Chandra 135190781

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113519078@std.stei.itb.ac.id

Abstract—The application of various sub-topics in discrete

mathematics can be obscure and often unthinkably odd. Graph

theory also shares this characteristic where its applications might

lie in fields such as crime analysis, molecular chemistry, and even

sociology. The use of graph theory also proves to be prevalent in

other sub-topics of discrete mathematics other than said graph

theory itself, such as logic, among other sub-topics. This paper will

explore ways of which to implement fundamental graph theory

principles to the field of logic, in the form of solving logic puzzles

which usually involves the process of manual mental labor. The

diagrammatic method of solving said puzzles will also be

implemented as an algorithm in the programming language Python

with an uncomplicated complexity and relatively moderate degree

of modularity. This method will hopefully prove to be more visually

comprehensible in tackling the problem and can provide a more

structured solution with a clear and concise flow of steps.

Keywords—Algorithm, Diagrammatic, Graph theory, Logic.

I. INTRODUCTION

Logic puzzles can be defined as problems that require some

form of deduction or logical reasoning to solve. The first logic

puzzle ever created can be found in “The Game of Logic”, a

book published in 1886 by Charles Lutwidge Dodgson, better

known by his pseudonym Lewis Carroll, who was a children’s

fiction writer (notable works include “Alice’s Adventures in

Wonderland” and “Through the Looking-Glass”) as well as a

mathematician specializing in the field of mathematical logic.

Dodgson’s book contained games that required readers to

confirm a conclusion from a handful of given premises.

Raymond M. Smullyan went on to expand the branch of logic

puzzles and written over 10 publications on the topic over his

career. Smullyan also popularized the Knights and Knave logic

puzzle—one of the most recognizable logic problems and is

heavily used in the field of logic and computer science. The

puzzle above is based on a story containing a similar problem;

the riddle of the two doors and two guards, where one door

contained treasure while the other would bring death, and only

one of the two guards spoke the truth.

The ‘Gold in a Box’ puzzle (other version such as the ‘Thief

Accusation’ puzzle) also comes to mind, as the solution for it

can be found with a similar course of thought which would be

to reverse evaluate different scenarios, this puzzle’s distinctive

characteristic would be the fact that all the boxes already have

signs stating things about itself/other boxes, instead of first

having been asked to and only have one chance to ask so.

The process of reverse evaluation can be done using truth

tables, as to give a more visually clear representation of the

scenarios and statements on the boxes. Though that is the case,

there still could be merit (especially for pedagogical purposes)

in exploring other ways to do this such as by applying graph

theory to further expand upon this visual representation to give

a more intuitive perspective on the problem and its solution.

The following sections will cover a handful of topics from the

fundamentals of graph theory itself, the use of graph theory, as

well as other related terminologies that hopefully will give an

image as to how we will achieve said things. The paper will also

cover points such as creating algorithms based on the method

and analyzing the applicability of the algorithm.

II. FUNDAMENTAL THEOREM

This section will mainly cover the definitions as well as

theoretical knowledge needed as a pre-requisite to fully grasp

what will be discussed in the following sections. Among other

topics, an exposition of graph theory as a sub-discipline of

discrete mathematics will heavily be focused upon, along with

other minor subjects such as an overview of logic puzzles

themselves.

A. Graph

In layman’s terms, a graph could be seen as a network that

helps show the interconnected-ness or relationships between

various components. To better describe and help visualize the

analogy, consider the following propositions. “Anne & Barry

are friends, Barry & Charlie are friends, and Charlie & Anne are

friends”. The components referred to in the layman’s definition

in this instance would be the list of people which would be Anne,

Barry, and Charlie while the relationship/interconnectedness

between the components would be their friendship as stated in

the original proposition.

Fig. 2.1 Graph representation of referenced prompt

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2020/2021

Parallels could be drawn from the prompt to a closer, much

more accurate definition of a graph, the components Anne,

Barry and Charlie are represented by the nodes/vertices of the

graph labeled 1,2,3 respectively (note that in this case, the

representation and labeling of the components are ordered

arbitrarily). The bi-directional friendship (more on

bidirectionality of graphs will be explained in later passages) of

the components/people stated are defined by the edges of the

graph, an example of this would be that of the node labelled ‘1’,

a relationship is shown between said node with the node labelled

‘2’ and ‘3’, which represents the friendship of components

‘Anne’ & ‘Barry’ as well as ‘Anne’ & ‘Charlie’.
Hence to formalize the definition, according to West (1996),

a graph G = (V, E) is a set of vertices V and edges E where each

edge (u, v) is a connection between vertices (note u, v ∈ V). If

the graph in figure 2.1 were to be written in mathematical

notation, the vertex set V would yield {1,2,3} while the edge set

E would be denoted as {(1,2), (2,3), (1,3)}.

B. Graph Variant

Munir (2010) drew distinctions between different types of

graphs, categorized based on the presence/lack thereof any

looping edges or multiple (double-incidental) edges in a graph.

These categories are as follow, simple graphs, and unsimple

graphs that can be further categorized into multigraphs and

pseudo-graphs.

Fig. 2.2 Simple graph

Shown in the above figure is a simple graph, which can be

defined as graphs that do not have any looping or multiple edges

present.

Fig. 2.3 Multigraph

As seen above, the multigraph can be identified by the

number of coinciding/incidental edges over two of the same

vertices, a graph can be categorized as a multigraph on the

condition that it has one or more incidental edges.

Fig. 2.4 Pseudo-graph

Pseudo-graphs, belonging to the same category of graphs as

multigraphs—as unsimple graphs, can be identified by the

presence of a looping edge in a graph or an edge that spans

across two of the same vertices.
The following method of categorization will later prove to be

more of practical use in this particular paper. Graphs can also be

distinct from each other based upon its directionality, and can be

categorized into undirected graphs, as well as directed graphs or

digraphs.
Figures 2.2, 2.3, and 2.4 all depict an undirected graph, a

graph that does not take consideration for the directionality of

an edge, therefore in other words, an element of the edge set E

that is of (u, v) is indistinguishable from (v, u) with a note that

for a graph with a vertex set V, u, v ∈ V.

Fig. 2.5 Directed graph

A directed graph, such as shown above, demonstrates the

distinction said graph makes upon the connection between two

vertices. As opposed to the previous instance for undirected

graphs, the visual representation of digraph draws a distinction

between an element of an edge set (u, v) and of (v, u) for the fact

that digraphs are drawn with arrows indicating the source vertex

and the destination vertex.
As said in the prior paragraphs, this graph will prove to be

useful as it will ease the process of monitoring specific vertices

(more on this will be discussed in following paragraphs along

with the supplementary terminologies required to cover the

subject).

C. Terminology

A few basic terminologies of graph theory include adjacency,

incidence, isolated vertex, null graph, and degree (Munir, 2010).

Note that not all terminologies are going to be covered in this

paper, as more deeper terminologies such as circuits/cycles and

paths will not have much merit in discussing.
Adjacency describes the characteristic of two vertices that are

connected with at least one edge (u, v), another term for this

characteristic would be ‘neighboring’ vertices.
Incidence on the other hand, as touched upon previously as

well describes the relationship between an edge and

corresponding vertices/nodes that it is connected to, hence for

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2020/2021

an element of an edge set e = (vj, vk), e is said to be incidental

with vertices vj and vk.

Fig. 2.6 Isolated vertex

In the above graph, the vertex labelled ‘5’ is coined an isolated

vertex because of the fact that it does not have any incidental

edges connected to it. Hence it can be said that there are no

isolated vertices for the graphs in previous figures.

Fig. 2.7 Null graph

A null graph can be defined as a graph without the presence

of edges or can also be stated as a graph with a null set as its

edge set. From the previous definition of isolated vertices as

well, we could also rephrase the definition of null graphs as only

having isolated vertices for all the graph’s vertices.
The final terminology discussed will be the concept of

degrees, degrees can be defined as the amount of edges

incidental with a specified vertex, this operation can be denoted

as d(v). Consider the simple graph in figure 2.2, an operation of

d(1) would yield the degree of 2, shown by edges (1,2) and (1,3)

while an operation of d(3) would yield the degree value of 3.
Note that the concept of degrees gets further broken down for

directed graphs, this breakdown consists of inbound degree or

in-degree(the amount of edges incidental with the specified

vertex that has the specified vertex as the destination vertex) and

outbound degree or out-degree (the amount of edges incidental

with the specified vertex that has the specified vertex as the

source vertex).
Consider the digraph in figure 2.5, an operation of din(1)

would yield the value 0 as there are no inbound edges going into

the node labelled ‘1’, while the operation dout(1) would yield the

degree value of 2 which refers to the edge (1,2) and (1,3). Take

note that the concept of directed degrees (in-degree and out-

degrees) will be part of the main methodology into how a ‘Gold

in a Box’ logic puzzle can be solved utilizing graph theory.

D. Graph Representation

As the paper will also eventually cover applicative ways of

implementing the solution of the ‘Gold in a Box’ logic puzzle

algorithmically, a way to restructure these graphs into process-

able data structures must be thought of. There are several options

to do this such as using adjacency matrices, incidency matrices,

as well as adjacency lists.
Briefly, an adjacency matrix maps vertices to one another

through a matrix, where the fundamental rule to form the matrix

are as follow “exists an edge (u,v), then it shall be indicated with

a 1” while if an edge between two vertices does not exist, it will

be denoted as 0. Slightly varying methods of forming adjacency

matrices exist, mainly differing in the type of graph that is trying

to be represented. For example, an undirected graph can be

represented as a symmetric matrix as edges have

bidirectionality, while the opposite is true for digraphs [as edge

(u,v) does not imply the existence of edge (v,u)]. Adjacency

matrices can also be utilized to represent unsimple graphs by

specifying the amount of coinciding/double edges present.
Among other methods, incidency matrices can also be utilized

to represent a graph, this is done by mapping nodes to edges on

the graph, an incidental edge would be denoted as 1, and would

be denoted as 0 otherwise. Similar to the adjacency matrix, this

graph representation can also be implemented as lists, in which

the index of a list would represent vertices in a graph while the

elements of each index would be put inside an array of all

adjacent nodes with the original specified node.

E. Logic

Logic is a mathematical field that mainly discusses

propositions (premise and conclusion derivation/evaluation) and

interrelationship. Propositions can be defined as a declarative

sentence that has a truth value (Genesereth & Kao, 2016).

In logic, propositions can be assigned to variables, then have

truth values attributed to them, this process of determining truth

value is evaluation, where an interpretation of a language or a

set of variables is said to satisfy a proposition if and only if the

proposition is true under that interpretation. Consider the

following example, “Anne is Caucasian” and “Barry is Asian”,

the proposition “Anne and Barry are Caucasian” would evaluate

to be false while the proposition “Anne or Barry is Caucasian”

would evaluate to be true.

The same could also be done, but in reverse, hence it can be

said that an interpretation can be derived from a set of

propositions, this process of reverse evaluation can be done by

using truth tables and eliminating rows where the interpretation

do not satisfy the sentence, leaving behind the possible

interpretations of the sentence.

III. METHODOLOGY

A. Knights and Knaves

The solution to the puzzle is first going to be shown by the

method of reverse evaluation, as said in the previous section, and

for that purpose, an example of the popular aforementioned

knights and knaves puzzle will be used.

The prompt of the knights and knaves problem are as follow,

consider the fact that knights always tell the truth, while knaves

always lie. In an instance, there are two people labelled A and B

(note their identity of whether or not they are knights or knave

are initially obscured), in which person A says that both A and

B are knaves.

Intuitively the solve for this puzzle would be to go through

the scenario based on person A’s statement. A scenario where A

is an actual knight would be implausible because an actual

knight would reveal their own identities to be knights, hence it

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2020/2021

can be concluded that person A is a knave, and the lie of the

statement lies within the fact that person B is a knight, not a

knave.

Table 3.1 Truth table for knights and knaves

The table above shows a more structured way to think about

the reverse evaluation process, the truth table tabulates all

possible combination of roles A and B might have as well as the

truth value of the statement person A gave which is why the

statement “We are both knaves” only evaluate to be true in line

4. The process of elimination can be done by first crossing out

line 1 and 2 for the reason of A being a knight and A telling a

lie, then line 4 can also be eliminated because if so, A would be

a knight and would have told the truth. Hence the only possible

interpretation is for A to be a knave and for B to be a knight.

B. Gold in a Box

Now that a thorough understanding of reverse evaluation have

been established, consider the following prompt for the ‘Gold in

a Box’ logic puzzle. There are three boxes, one containining

gold while the other two empty, each of the boxes have hints

about where the gold lies, but only one of these hints are true.

The hints on box #1 states that the gold is not in box #1, box #2

also states that the gold is not in box #2 while box #3 states that

the gold is in box #2, the next prompt would be to figure out

which box the gold is in.
Similarly, reverse evaluation can be done to solve for the

solution for this puzzle, a traversal of all the scenarios can be

done. For example, if the gold is indeed in box #1, then that

implies that the hint on box #2 that states the gold is not in box

#2 is true, while the hint on box #3 that states the gold is in box

#2 is false and since it is known that the hint on box #1 is also

untrue, that means there are 2 lies and 1 truth, which correctly

corresponds to the original statement of the problem, hence this

is the correct solution.
Another instance would be to assume the other scenario that

box #2 contains the gold, this would imply the hint on box #2 to

be a lie but would imply the hint on box #1 and box #3 to be

true. Hence since there are 2 truths and 1 lie, this cannot be the

case, as explicitly said in the original problem statement.

Table 3.2 Truth table for gold in a box

It is observed that the same results also hold true, where it

could be seen that the only line where there are two lies and one

truth only is true for the first line, where the gold is in box 1,

hence it can be concluded that the solution of this puzzle is that

the gold is located in the first box as it is the only logically

consistent solution with the problem statement.
However, the problem gets alot more complicated if it were

scaled up to have ten more or one hundred more boxes added,

intuitively solving the problem would not be as easy and

utilising truth tables would no longer be feasible considering the

increase of boxes.

C. Utilizing Graphs to Solve the Puzzle

The boxes in the original problem will be represented as

points, or in graph theory’s terminology, nodes/vertices, it is

known that the hint written on box #1 states that the gold is not

in that specified box, this statement can be represented as having

outgoing/outbound edges going into every other vertices other

than box #1. The same also applies with the hint statement of

box #2, it will also be represented with one outbound edge going

to the vertex that represent box #1 and box #3. In the case of box

#3, since it already specified the box in which the gold is in (box

#2), an outgoing edge can be drawn going into that one specific

box (#2).
Using this graph, the cases that were considered can once

again be run through, if a box had a degree value of two or more

inbound edges, then—because edges ingoing edges represent

boxes that state the gold is in the specified vertex—this implies

that (for a specified problem where the number of truths n are

explicitly stated) if there are n+1 or more numbers of an inbound

degree, that must mean the vertex in discussion cannot be the

one containing the gold, as that would mean the all the inbound

edges tell the truth, and since there are n+1 inbound edges, that

must mean this isn’t the correct solution.
Hence a short algorithm of sorts can be constructed, the

abstraction is as follows,
1. Take a node of any label.

2. Count the numbers of inbound edges which have

arrows pointing at that specified node (this gives the

number of boxes telling the truth if and only if the

specified node represents the box containing the gold).

3. Move on to the next node and repeat until the solution

is found, or there are no nodes left.

This method will prove to be more efficient than simply going

through each and every scenario and confirming the truth values

of the other corresponding boxes, solving the puzzle

diagrammatically by using graphs will give the algorithm a

theoretical framework to work upon, and the use of that

algorithm in and of itself will allow for great automation as the

results of the algorithm (list of all the inbound degrees) can be

put inside a list that is easily accessible and process-able, this

will also ease the process when it comes to different prompt

conditions, as fixed constants can be replaced with variables,

allowing for a higher degree of modularity of the algorithm. One

instance of this would be if the prompt suggested that not only

one box had a true hint, but two, or three, and so on and so forth.

Hence for any set of boxes and hints, a simple matching of the

number of truths that are there in the hints and the number of

inbound degree in the list could be done to find the correct

solution.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2020/2021

IV. RESULTS AND DISCUSSION

A. Conceptual Implementation

Consider the prior prompt of the ‘Gold in a Box’ logic puzzle,

the following the methods described before, a graph

representing the problem shall be constructed.

Fig. 4.1 Graph representation of the gold in a box puzzle

Following the methods stated in previous sections, a list of all

the inbound degree is going to be made from isolating each

node/vertex and then counting the in-degree. Note that the label

‘1’, ‘2’, and ‘3’ represent the boxes #1, #2, and #3 respectively.
Hence, din(1) would yield the degree value of 1 because of the

edge (2,1), while din(2) would yield the value of 2 because of

edges (1,2) and (3,2), din(3) would yield the value of 2 as well

because of edges (1,3) and (2,3). Therefore, the correct solution

would be that the gold is located in box #1 because it is the only

logically consistent node with only one truth (an inbound degree

of 1).
As touched upon previously, this diagrammatical method of

solving the logic puzzle utilizing graph theory also allows us to

replace the number of statements that are known to be the truth.

For instance, if the original prompt of “it is known that there is

only one truth from three of the hints on the boxes” were

changed to “only two truths from three of the hints” then we

would reference once again the list of din that has been made

which would be {din(1), din(2), din(3)} or {1, 2, 2}. Hence it can

be concluded that for this particular case, the gold is either in

box #2 or #3 because of a lack of information, but this hopefully

will give an idea of the versatility of an algorithm of such.

B. Algorithmic Implementation

The algorithmic implementation of the method will be done

in the programming language Python (version 3.8.2). As a

means of explaining the source code of the program in a

thorough manner, the program will be divided into its smaller

abstractions so that it will be easier to get a grasp of the overall

flow of the program.

Fig. 4.2 Initial input

The first part of the program is to request from the user an

input of the fundamental information needed for the processes

that will be done later on in the program. The values being

referred to are the known number of truthful statements in the

hint written on the boxes of the puzzle, as well as the known

number of boxes in the puzzle itself, these values will be stored

in the variable truth and boxes respectively.

Fig. 4.3 Adjacency matrix initialization

The next snippet of the code includes the declaration along

with the initialization of an adjacency matrix (a square matrix of

size that corresponds with the variable boxes), this method of

graph representation has been discussed before in previous

sections and is implemented here for an instance where a

directed graph is the graph that is trying to be represented. The

matrix-filling/input process also has been phrased in a way that

allows the experience to be more intuitive to the users, having

used descriptive language such as “if the hint on box N says that

the gold is in box M” instead of directly prompting the user to

determine if a directed edge exists between two specified

vertices. This hopefully won’t only be beneficial in terms of

increasing ease of access, but also making the input process

more efficient without having to first tabulate the puzzle into an

adjacency table beforehand, even from an educated/academic

standpoint.

Fig. 4.4 Printing the adjacency matrix

The current snippet of the code is overall very straightforward

as its only purpose is to serve as a visualization tool for the users,

as to print the matrix that has been made from the user’s prior

inputs.

Fig. 4.5 Processing the adjacency matrix into a list of inbound degree

The next step of the program is to take the adjacency matrix

and convert it into a list of all the inbound degree of each and

every node in the graph. This is done by firstly declaring and

initializing an array of a size that corresponds with the variable

boxes.
A traversal through all of matrix’s elements will be done and

in short, a summation of each of the matrix’s column’s

cumulative elements sum will be calculated and stored into a

corresponding column/index of the inbound degree array. The

final calculated array will then be printed by the program, as a

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2020/2021

means of visualization to better understand the calculating

process.

Fig. 4.6 Traversal search of the solution

After obtaining a complete array of the tally of inbound

degrees for each of the boxes (in other words, a tally of all boxes

that says the gold is in that specific box), a traversal search

algorithm can be done, as to find a match between the number

of truths that are known, and the value of the inbound degree.

As previously stated, any inbound degree value that is not

exactly equal to the number of truths known in the puzzle

prompt cannot be the correct case/solution as it would mean

there is a lie in the collection of statements.
Take note as well that the chosen algorithm is an all-element-

spanning traversal search instead of using while-loop or a

boolean-flag protection for the reason that if the reverse

evaluation process that has been done yielded two or more

possible boxes to contain the gold, then that would mean,

without further information the actual box containing the gold

cannot be determined, hence the traversal search, and if the two

or more result were to be the case, the program would print out

the corresponding amount of solutions that are deemed possible.

Fig. 4.7 Output of the program

Hence, it can be seen that the output of the program that

yielded the solution that box #1 contains the gold is indifferent

from previous analysis and methods using intuitive reverse

evaluation as well as by using truth tables.

V. CONCLUSION

To conclude the findings of this paper, the use of graph theory

to diagrammatically solve logic puzzles can effectively do so in

a manner that is clear, concise, and arguably more intuitive than

simply going through all scenarios and trying to rule out

logically inconsistent conditions only with thought-

experiments.

It can also be concluded that the development and use of such

an algorithm to have a more structured way of solving a problem

can be simplified through the steps of proper computational

thinking by the decomposition of larger problems into smaller

issues, pattern recognizing as a means of ruling out patterns so

that a solution can be made as general as possible with a high

degree of modularity, abstraction to eliminate unimportant/less

relevant subjects of the topic and finally to develop the

algorithm itself.

The application of such an algorithm could be used in

pedagogy as an introduction to logic, as the diagrammatical

approach lends a good visual representation of the problem,

especially with the nature of digraphs’ clear directionality. In the

field of computational/mathematical logic, the algorithm itself

could be adapted to fit various other iterations of similarly

constructed puzzles in a straightforward way. As for real world

application, the author could see the potential of this algorithm

to be used in a specific crime analysis case where amongst a

number of suspects, the amount of truth-tellers can already be

scoped out, therefore the algorithm can help finalize the

deduction process, this is of course quite the farfetched

proposition and scenario, but perhaps the author would like to

end the academic literature in a more open-ended note as to

incite inspiration and the inventiveness of the readers in regards

to this subject.

VI. ACKNOWLEDGMENT

First and foremost, the author would like to express gratitude

towards God for the opportunity to write this particular paper.

The author would also like to thank all lecturers, professors, and

aides of Institut Teknologi Bandung that have been involved in

the pedagogical process of instilling the discipline of discrete

mathematics to the author. The author would also like to

specifically thank Dra. Harlili M.Sc. who is assigned to be the

author’s lecturer in the Discrete Mathematics course of code

IF2120, as well Dr. Ir. Rinaldi Munir, MT. whose learning

resources have been heavily used and contributed a very large

amount towards the process of formulating and writing this

paper. Among others, the author would also like to thank a

handful of individuals from his group of friends who have

helped him in proofreading parts of his paper. The author

realizes that there are still many unrefined and imperfect parts

of the paper and would like to apologize for any uncalled

mistakes present in the literature.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2020/2021

REFERENCES

[1] D. B. West, Introduction to graph theory (Vol. 2). Upper Saddle River,

New Jersey: Prentice Hall, 1996.

[2] G. Van Rossum, F. L. Drake, Introduction to Python 3: Python

Documentation Manual Part 1. California: CreateSpace, 2009.

[3] J. L. Gross, J. Yellen, Graph theory and its applications. Florida: CRC

Press, 2005.

[4] K. H. Rosen, K. Krithivasan, Discrete mathematics and its applications:

with combinatorics and graph theory. Pennsylvania: Tata McGraw-Hill

Education, 2012

[5] M. Genesereth, E. J. Kao, “Introduction to Logic,” in Synthesis Lectures

on Computer Science. Vermont: Morgan & Claypool Publishers, 2016.

[6] R. Munir, Matematika Diskrit (Revisi Ketujuh). Bandung: Informatika

Bandung, 2020.

[7] S. Kapil, Clean Python. New York: Apress, 2019.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Jakarta, 5 Desember 2020

James Chandra - 13519078

