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Abstract—The application of various sub-topics in discrete 

mathematics can be obscure and often unthinkably odd. Graph 

theory also shares this characteristic where its applications might 

lie in fields such as crime analysis, molecular chemistry, and even 

sociology. The use of graph theory also proves to be prevalent in 

other sub-topics of discrete mathematics other than said graph 

theory itself, such as logic, among other sub-topics. This paper will 

explore ways of which to implement fundamental graph theory 

principles to the field of logic, in the form of solving logic puzzles 

which usually involves the process of manual mental labor. The 

diagrammatic method of solving said puzzles will also be 

implemented as an algorithm in the programming language Python 

with an uncomplicated complexity and relatively moderate degree 

of modularity. This method will hopefully prove to be more visually 

comprehensible in tackling the problem and can provide a more 

structured solution with a clear and concise flow of steps. 
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I.   INTRODUCTION 

Logic puzzles can be defined as problems that require some 

form of deduction or logical reasoning to solve. The first logic 

puzzle ever created can be found in “The Game of Logic”, a 

book published in 1886 by Charles Lutwidge Dodgson, better 

known by his pseudonym Lewis Carroll, who was a children’s 

fiction writer (notable works include “Alice’s Adventures in 

Wonderland” and “Through the Looking-Glass”) as well as a 

mathematician specializing in the field of mathematical logic. 

Dodgson’s book contained games that required readers to 

confirm a conclusion from a handful of given premises. 

Raymond M. Smullyan went on to expand the branch of logic 

puzzles and written over 10 publications on the topic over his 

career. Smullyan also popularized the Knights and Knave logic 

puzzle—one of the most recognizable logic problems and is 

heavily used in the field of logic and computer science. The 

puzzle above is based on a story containing a similar problem; 

the riddle of the two doors and two guards, where one door 

contained treasure while the other would bring death, and only 

one of the two guards spoke the truth. 

The ‘Gold in a Box’ puzzle (other version such as the ‘Thief 

Accusation’ puzzle) also comes to mind, as the solution for it 

can be found with a similar course of thought which would be 

to reverse evaluate different scenarios, this puzzle’s distinctive 

characteristic would be the fact that all the boxes already have 

signs stating things about itself/other boxes, instead of first 

having been asked to and only have one chance to ask so. 

The process of reverse evaluation can be done using truth 

tables, as to give a more visually clear representation of the 

scenarios and statements on the boxes. Though that is the case, 

there still could be merit (especially for pedagogical purposes) 

in exploring other ways to do this such as by applying graph 

theory to further expand upon this visual representation to give 

a more intuitive perspective on the problem and its solution. 

The following sections will cover a handful of topics from the 

fundamentals of graph theory itself, the use of graph theory, as 

well as other related terminologies that hopefully will give an 

image as to how we will achieve said things. The paper will also 

cover points such as creating algorithms based on the method 

and analyzing the applicability of the algorithm. 

 

 

II.  FUNDAMENTAL THEOREM 

This section will mainly cover the definitions as well as 

theoretical knowledge needed as a pre-requisite to fully grasp 

what will be discussed in the following sections. Among other 

topics, an exposition of graph theory as a sub-discipline of 

discrete mathematics will heavily be focused upon, along with 

other minor subjects such as an overview of logic puzzles 

themselves. 

 

A. Graph 

In layman’s terms, a graph could be seen as a network that 

helps show the interconnected-ness or relationships between 

various components. To better describe and help visualize the 

analogy, consider the following propositions. “Anne & Barry 

are friends, Barry & Charlie are friends, and Charlie & Anne are 

friends”. The components referred to in the layman’s definition 

in this instance would be the list of people which would be Anne, 

Barry, and Charlie while the relationship/interconnectedness 

between the components would be their friendship as stated in 

the original proposition. 

 
Fig. 2.1 Graph representation of referenced prompt 
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Parallels could be drawn from the prompt to a closer, much 

more accurate definition of a graph, the components Anne, 

Barry and Charlie are represented by the nodes/vertices of the 

graph labeled 1,2,3 respectively (note that in this case, the 

representation and labeling of the components are ordered 

arbitrarily). The bi-directional friendship (more on 

bidirectionality of graphs will be explained in later passages) of 

the components/people stated are defined by the edges of the 

graph, an example of this would be that of the node labelled ‘1’, 

a relationship is shown between said node with the node labelled 

‘2’ and ‘3’, which represents the friendship of components 

‘Anne’ & ‘Barry’ as well as ‘Anne’ & ‘Charlie’. 
Hence to formalize the definition, according to West (1996), 

a graph G = (V, E) is a set of vertices V and edges E where each 

edge (u, v) is a connection between vertices (note u, v ∈ V). If 

the graph in figure 2.1 were to be written in mathematical 

notation, the vertex set V would yield {1,2,3} while the edge set 

E would be denoted as {(1,2), (2,3), (1,3)}. 

 

B. Graph Variant 

Munir (2010) drew distinctions between different types of 

graphs, categorized based on the presence/lack thereof any 

looping edges or multiple (double-incidental) edges in a graph. 

These categories are as follow, simple graphs, and unsimple 

graphs that can be further categorized into multigraphs and 

pseudo-graphs. 

 
Fig. 2.2 Simple graph 

 
Shown in the above figure is a simple graph, which can be 

defined as graphs that do not have any looping or multiple edges 

present. 

 
Fig. 2.3 Multigraph 

 
As seen above, the multigraph can be identified by the 

number of coinciding/incidental edges over two of the same 

vertices, a graph can be categorized as a multigraph on the 

condition that it has one or more incidental edges. 
 

 
Fig. 2.4 Pseudo-graph 

 
Pseudo-graphs, belonging to the same category of graphs as 

multigraphs—as unsimple graphs, can be identified by the 

presence of a looping edge in a graph or an edge that spans 

across two of the same vertices. 
The following method of categorization will later prove to be 

more of practical use in this particular paper. Graphs can also be 

distinct from each other based upon its directionality, and can be 

categorized into undirected graphs, as well as directed graphs or 

digraphs. 
Figures 2.2, 2.3, and 2.4 all depict an undirected graph, a 

graph that does not take consideration for the directionality of 

an edge, therefore in other words, an element of the edge set E 

that is of (u, v) is indistinguishable from (v, u) with a note that 

for a graph with a vertex set V, u, v ∈ V. 

 
Fig. 2.5 Directed graph 

 
A directed graph, such as shown above, demonstrates the 

distinction said graph makes upon the connection between two 

vertices. As opposed to the previous instance for undirected 

graphs, the visual representation of digraph draws a distinction 

between an element of an edge set (u, v) and of (v, u) for the fact 

that digraphs are drawn with arrows indicating the source vertex 

and the destination vertex. 
As said in the prior paragraphs, this graph will prove to be 

useful as it will ease the process of monitoring specific vertices 

(more on this will be discussed in following paragraphs along 

with the supplementary terminologies required to cover the 

subject). 
 

C. Terminology 

A few basic terminologies of graph theory include adjacency, 

incidence, isolated vertex, null graph, and degree (Munir, 2010). 

Note that not all terminologies are going to be covered in this 

paper, as more deeper terminologies such as circuits/cycles and 

paths will not have much merit in discussing. 
Adjacency describes the characteristic of two vertices that are 

connected with at least one edge (u, v), another term for this 

characteristic would be ‘neighboring’ vertices.  
Incidence on the other hand, as touched upon previously as 

well describes the relationship between an edge and 

corresponding vertices/nodes that it is connected to, hence for 
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an element of an edge set e = (vj, vk), e is said to be incidental 

with vertices vj and vk. 

 
Fig. 2.6 Isolated vertex 

 
In the above graph, the vertex labelled ‘5’ is coined an isolated 

vertex because of the fact that it does not have any incidental 

edges connected to it. Hence it can be said that there are no 

isolated vertices for the graphs in previous figures. 

 
Fig. 2.7 Null graph 

 
A null graph can be defined as a graph without the presence 

of edges or can also be stated as a graph with a null set as its 

edge set. From the previous definition of isolated vertices as 

well, we could also rephrase the definition of null graphs as only 

having isolated vertices for all the graph’s vertices. 
The final terminology discussed will be the concept of 

degrees, degrees can be defined as the amount of edges 

incidental with a specified vertex, this operation can be denoted 

as d(v). Consider the simple graph in figure 2.2, an operation of 

d(1) would yield the degree of 2, shown by edges (1,2) and (1,3) 

while an operation of d(3) would yield the degree value of 3. 
Note that the concept of degrees gets further broken down for 

directed graphs, this breakdown consists of inbound degree  or 

in-degree(the amount of edges incidental with the specified 

vertex that has the specified vertex as the destination vertex) and 

outbound degree or out-degree (the amount of edges incidental 

with the specified vertex that has the specified vertex as the 

source vertex). 
Consider the digraph in figure 2.5, an operation of din(1) 

would yield the value 0 as there are no inbound edges going into 

the node labelled ‘1’, while the operation dout(1) would yield the 

degree value of 2 which refers to the edge (1,2) and (1,3). Take 

note that the concept of directed degrees (in-degree and out-

degrees) will be part of the main methodology into how a ‘Gold 

in a Box’ logic puzzle can be solved utilizing graph theory. 

 

D. Graph Representation 

As the paper will also eventually cover applicative ways of 

implementing the solution of the ‘Gold in a Box’ logic puzzle 

algorithmically, a way to restructure these graphs into process-

able data structures must be thought of. There are several options 

to do this such as using adjacency matrices, incidency matrices, 

as well as adjacency lists. 
Briefly, an adjacency matrix maps vertices to one another 

through a matrix, where the fundamental rule to form the matrix 

are as follow “exists an edge (u,v), then it shall be indicated with 

a 1” while if an edge between two vertices does not exist, it will 

be denoted as 0. Slightly varying methods of forming adjacency 

matrices exist, mainly differing in the type of graph that is trying 

to be represented. For example, an undirected graph can be 

represented as a symmetric matrix as edges have 

bidirectionality, while the opposite is true for digraphs [as edge 

(u,v) does not imply the existence of edge (v,u)]. Adjacency 

matrices can also be utilized to represent unsimple graphs by 

specifying the amount of coinciding/double edges present. 
Among other methods, incidency matrices can also be utilized 

to represent a graph, this is done by mapping nodes to edges on 

the graph, an incidental edge would be denoted as 1, and would 

be denoted as 0 otherwise. Similar to the adjacency matrix, this 

graph representation can also be implemented as lists, in which 

the index of a list would represent vertices in a graph while the 

elements of each index would be put inside an array of all 

adjacent nodes with the original specified node. 
 

E. Logic 

Logic is a mathematical field that mainly discusses 

propositions (premise and conclusion derivation/evaluation) and 

interrelationship. Propositions can be defined as a declarative 

sentence that has a truth value (Genesereth & Kao, 2016). 

In logic, propositions can be assigned to variables, then have 

truth values attributed to them, this process of determining truth 

value is evaluation, where an interpretation of a language or a 

set of variables is said to satisfy a proposition if and only if the 

proposition is true under that interpretation. Consider the 

following example, “Anne is Caucasian” and “Barry is Asian”, 

the proposition “Anne and Barry are Caucasian” would evaluate 

to be false while the proposition “Anne or Barry is Caucasian” 

would evaluate to be true. 

The same could also be done, but in reverse, hence it can be 

said that an interpretation can be derived from a set of 

propositions, this process of reverse evaluation can be done by 

using truth tables and eliminating rows where the interpretation 

do not satisfy the sentence, leaving behind the possible 

interpretations of the sentence. 

 

 

III.   METHODOLOGY 

A. Knights and Knaves 

The solution to the puzzle is first going to be shown by the 

method of reverse evaluation, as said in the previous section, and 

for that purpose, an example of the popular aforementioned 

knights and knaves puzzle will be used. 

The prompt of the knights and knaves problem are as follow, 

consider the fact that knights always tell the truth, while knaves 

always lie. In an instance, there are two people labelled A and B 

(note their identity of whether or not they are knights or knave 

are initially obscured), in which person A says that both A and 

B are knaves. 

Intuitively the solve for this puzzle would be to go through 

the scenario based on person A’s statement. A scenario where A 

is an actual knight would be implausible because an actual 

knight would reveal their own identities to be knights, hence it 
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can be concluded that person A is a knave, and the lie of the 

statement lies within the fact that person B is a knight, not a 

knave. 

 

Table 3.1 Truth table for knights and knaves 

 
 

The table above shows a more structured way to think about 

the reverse evaluation process, the truth table tabulates all 

possible combination of roles A and B might have as well as the 

truth value of the statement person A gave which is why the 

statement “We are both knaves” only evaluate to be true in line 

4. The process of elimination can be done by first crossing out 

line 1 and 2 for the reason of A being a knight and A telling a 

lie, then line 4 can also be eliminated because if so, A would be 

a knight and would have told the truth. Hence the only possible 

interpretation is for A to be a knave and for B to be a knight. 

 

B. Gold in a Box 

Now that a thorough understanding of reverse evaluation have 

been established, consider the following prompt for the ‘Gold in 

a Box’ logic puzzle. There are three boxes, one containining 

gold while the other two empty, each of the boxes have hints 

about where the gold lies, but only one of these hints are true. 

The hints on box #1 states that the gold is not in box #1, box #2 

also states that the gold is not in box #2 while box #3 states that 

the gold is in box #2, the next prompt would be to figure out 

which box the gold is in. 
Similarly, reverse evaluation can be done to solve for the 

solution for this puzzle, a traversal of all the scenarios can be 

done. For example, if the gold is indeed in box #1, then that 

implies that the hint on box #2 that states the gold is not in box 

#2 is true, while the hint on box #3 that states the gold is in box 

#2 is false and since it is known that the hint on box #1 is also 

untrue, that means there are 2 lies and 1 truth, which correctly 

corresponds to the original statement of the problem, hence this 

is the correct solution. 
Another instance would be to assume the other scenario that 

box #2 contains the gold, this would imply the hint on box #2 to 

be a lie but would imply the hint on box #1 and box #3 to be 

true. Hence since there are 2 truths and 1 lie, this cannot be the 

case, as explicitly said in the original problem statement. 

 
Table 3.2 Truth table for gold in a box 

 
 

It is observed that the same results also hold true, where it 

could be seen that the only line where there are two lies and one 

truth only is true for the first line, where the gold is in box 1, 

hence it can be concluded that the solution of this puzzle is that 

the gold is located in the first box as it is the only logically 

consistent solution with the problem statement. 
However, the problem gets alot more complicated if it were 

scaled up to have ten more or one hundred more boxes added, 

intuitively solving the problem would not be as easy and 

utilising truth tables would no longer be feasible considering the 

increase of boxes. 
 

C. Utilizing Graphs to Solve the Puzzle 

The boxes in the original problem will be represented as 

points, or in graph theory’s terminology, nodes/vertices, it is 

known that the hint written on box #1 states that the gold is not 

in that specified box, this statement can be represented as having 

outgoing/outbound edges going into every other vertices other 

than box #1. The same also applies with the hint statement of 

box #2, it will also be represented with one outbound edge going 

to the vertex that represent box #1 and box #3. In the case of box 

#3, since it already specified the box in which the gold is in (box 

#2), an outgoing edge can be drawn going into that one specific 

box (#2). 
Using this graph, the cases that were considered can once 

again be run through, if a box had a degree value of two or more 

inbound edges, then—because edges ingoing edges represent 

boxes that state the gold is in the specified vertex—this implies 

that (for a specified problem where the number of truths n are 

explicitly stated) if there are n+1 or more numbers of an inbound 

degree, that must mean the vertex in discussion cannot be the 

one containing the gold, as that would mean the all the inbound 

edges tell the truth, and since there are n+1 inbound edges, that 

must mean this isn’t the correct solution. 
Hence a short algorithm of sorts can be constructed, the 

abstraction is as follows, 
1. Take a node of any label. 

2. Count the numbers of inbound edges which have 

arrows pointing at that specified node (this gives the 

number of boxes telling the truth if and only if the 

specified node represents the box containing the gold). 

3. Move on to the next node and repeat until the solution 

is found, or there are no nodes left. 

This method will prove to be more efficient than simply going 

through each and every scenario and confirming the truth values 

of the other corresponding boxes, solving the puzzle 

diagrammatically by using graphs will give the algorithm a 

theoretical framework to work upon, and the use of that 

algorithm in and of itself will allow for great automation as the 

results of the algorithm (list of all the inbound degrees) can be 

put inside a list that is easily accessible and process-able, this 

will also ease the process when it comes to different prompt 

conditions, as fixed constants can be replaced with variables, 

allowing for a higher degree of modularity of the algorithm. One 

instance of this would be if the prompt suggested that not only 

one box had a true hint, but two, or three, and so on and so forth. 

Hence for any set of boxes and hints, a simple matching of the 

number of truths that are there in the hints and the number of 

inbound degree in the list could be done to find the correct 

solution. 
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IV.   RESULTS AND DISCUSSION 

A. Conceptual Implementation 

Consider the prior prompt of the ‘Gold in a Box’ logic puzzle, 

the following the methods described before, a graph 

representing the problem shall be constructed. 

 
Fig. 4.1 Graph representation of the gold in a box puzzle 

 
Following the methods stated in previous sections, a list of all 

the inbound degree is going to be made from isolating each 

node/vertex and then counting the in-degree. Note that the label 

‘1’, ‘2’, and ‘3’ represent the boxes #1, #2, and #3 respectively. 
Hence, din(1) would yield the degree value of 1 because of the 

edge (2,1), while din(2) would yield the value of 2 because of 

edges (1,2) and (3,2), din(3) would yield the value of 2 as well 

because of edges (1,3) and (2,3). Therefore, the correct solution 

would be that the gold is located in box #1 because it is the only 

logically consistent node with only one truth (an inbound degree 

of 1). 
As touched upon previously, this diagrammatical method of 

solving the logic puzzle utilizing graph theory also allows us to 

replace the number of statements that are known to be the truth. 

For instance, if the original prompt of “it is known that there is 

only one truth from three of the hints on the boxes” were 

changed to “only two truths from three of the hints” then we 

would reference once again the list of din that has been made 

which would be {din(1), din(2), din(3)} or {1, 2, 2}. Hence it can 

be concluded that for this particular case, the gold is either in 

box #2 or #3 because of a lack of information, but this hopefully 

will give an idea of the versatility of an algorithm of such. 

 

B. Algorithmic Implementation 

The algorithmic implementation of the method will be done 

in the programming language Python (version 3.8.2). As a 

means of explaining the source code of the program in a 

thorough manner, the program will be divided into its smaller 

abstractions so that it will be easier to get a grasp of the overall 

flow of the program. 

 

 
Fig. 4.2 Initial input 

 
The first part of the program is to request from the user an 

input of the fundamental information needed for the processes 

that will be done later on in the program. The values being 

referred to are the known number of truthful statements in the 

hint written on the boxes of the puzzle, as well as the known 

number of boxes in the puzzle itself, these values will be stored 

in the variable truth and boxes respectively. 

 

 
Fig. 4.3 Adjacency matrix initialization 

 
The next snippet of the code includes the declaration along 

with the initialization of an adjacency matrix (a square matrix of 

size that corresponds with the variable boxes), this method of 

graph representation has been discussed before in previous 

sections and is implemented here for an instance where a 

directed graph is the graph that is trying to be represented. The 

matrix-filling/input process also has been phrased in a way that 

allows the experience to be more intuitive to the users, having 

used descriptive language such as “if the hint on box N says that 

the gold is in box M” instead of directly prompting the user to 

determine if a directed edge exists between two specified 

vertices. This hopefully won’t only be beneficial in terms of 

increasing ease of access, but also making the input process 

more efficient without having to first tabulate the puzzle into an 

adjacency table beforehand, even from an educated/academic 

standpoint. 

 

 
Fig. 4.4 Printing the adjacency matrix  

 
The current snippet of the code is overall very straightforward 

as its only purpose is to serve as a visualization tool for the users, 

as to print the matrix that has been made from the user’s prior 

inputs. 

 

 
Fig. 4.5 Processing the adjacency matrix into a list of inbound degree 

 
The next step of the program is to take the adjacency matrix 

and convert it into a list of all the inbound degree of each and 

every node in the graph. This is done by firstly declaring and 

initializing an array of a size that corresponds with the variable 

boxes. 
A traversal through all of matrix’s elements will be done and 

in short, a summation of each of the matrix’s column’s 

cumulative elements sum will be calculated and stored into a 

corresponding column/index of the inbound degree array. The 

final calculated array will then be printed by the program, as a 
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means of visualization to better understand the calculating 

process. 

 

 
Fig. 4.6 Traversal search of the solution 

 
After obtaining a complete array of the tally of inbound 

degrees for each of the boxes (in other words, a tally of all boxes 

that says the gold is in that specific box), a traversal search 

algorithm can be done, as to find a match between the number 

of truths that are known, and the value of the inbound degree. 

As previously stated, any inbound degree value that is not 

exactly equal to the number of truths known in the puzzle 

prompt cannot be the correct case/solution as it would mean 

there is a lie in the collection of statements. 
Take note as well that the chosen algorithm is an all-element-

spanning traversal search instead of using while-loop or a 

boolean-flag protection for the reason that if the reverse 

evaluation process that has been done yielded two or more 

possible boxes to contain the gold, then that would mean, 

without further information the actual box containing the gold 

cannot be determined, hence the traversal search, and if the two 

or more result were to be the case, the program would print out 

the corresponding amount of solutions that are deemed possible. 

 

 
Fig. 4.7 Output of the program 

 
Hence, it can be seen that the output of the program that 

yielded the solution that box #1 contains the gold is indifferent 

from previous analysis and methods using intuitive reverse 

evaluation as well as by using truth tables. 
 

 

V.   CONCLUSION 

To conclude the findings of this paper, the use of graph theory 

to diagrammatically solve logic puzzles can effectively do so in 

a manner that is clear, concise, and arguably more intuitive than 

simply going through all scenarios and trying to rule out 

logically inconsistent conditions only with thought-

experiments. 

It can also be concluded that the development and use of such 

an algorithm to have a more structured way of solving a problem 

can be simplified through the steps of proper computational 

thinking by the decomposition of larger problems into smaller 

issues, pattern recognizing as a means of ruling out patterns so 

that a solution can be made as general as possible with a high 

degree of modularity, abstraction to eliminate unimportant/less 

relevant subjects of the topic and finally to develop the 

algorithm itself. 

The application of such an algorithm could be used in 

pedagogy as an introduction to logic, as the diagrammatical 

approach lends a good visual representation of the problem, 

especially with the nature of digraphs’ clear directionality. In the 

field of computational/mathematical logic, the algorithm itself 

could be adapted to fit various other iterations of similarly 

constructed puzzles in a straightforward way. As for real world 

application, the author could see the potential of this algorithm 

to be used in a specific crime analysis case where amongst a 

number of suspects, the amount of truth-tellers can already be 

scoped out, therefore the algorithm can help finalize the 

deduction process, this is of course quite the farfetched 

proposition and scenario, but perhaps the author would like to 

end the academic literature in a more open-ended note as to 

incite inspiration and the inventiveness of the readers in regards 

to this subject.  
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